当前位置首页 >> 百科新闻 >> 正文

厉害!史上最薄石墨烯灯泡“问世”国防科大造

更新时间: 2025-09-10 17:48:24

阅读人数: 229

本文主题: 国防科大教授都是哪里人

长沙晚报掌上长沙9月18日讯(全媒体记者 舒文 通讯员 陈思 梁化)今日,国防科大官方微信发文称,国防科大打造史上最薄石墨烯灯泡,有望用于未来手机屏幕和芯片,引发外界关注。记者从文中看到,来自国防科技大学前沿交叉学科学院的秦石乔教授、朱梦剑博士和徐威博士团队与诺贝尔物理奖得主康斯坦丁·诺沃肖诺夫教授团队合作,利用石墨烯,研制出了有史以来最薄的电灯泡,厚度0.34纳米,仅为头发丝直径的三十万分之一。这一研究成果将开辟石墨烯的全新应用!

据悉,国防科大的研究人员利用最古老、最简单的白炽灯原理,首次实现了石墨烯在空气中的稳定发光,并且基于这一技术研制了石墨烯发光阵列,单个像素尺寸小于5微米,可以和目前最先进的LED显示器相媲美,但厚度却不到目前最薄显示器的万分之一。

最薄对人类有何帮助?据悉,未来用石墨烯灯泡做的显示器超薄、可触摸、可弯曲、可折叠,把它卷成小小一块放入口袋不再是梦,这样的超薄柔性显示器拥有非常大的市场,它不仅便携、防摔不易碎、分辨率高……还具有原材料获取方便、制造成本低、制备工艺简单、低碳环保等优势。未来,那些只有在科幻电影中出现的可以任意弯曲折叠的超薄柔性显示器将走入我们的日常生活。同时,它还可以应用在硅基光电子集成和未来计算机芯片等领域。

厉害!史上最薄石墨烯灯泡“问世”国防科大造

全极化雷达成像:目标识别的“火眼金睛”

●它堪称雷达领域的一个世界性难题,相关研究方兴未艾

●它是一种前沿技术,成为提升目标识别性能的突破方向

●它在对地观测、减灾防灾、精确制导等方面应用前景广阔

国防科技大学教授陈思伟为您讲述——

全极化雷达成像:目标识别的“火眼金睛”

■解放军报记者 王握文 通讯员 陈兰美

雷达作为人类在20世纪的一项伟大发明,自1935年问世以来,其相关技术及装备发展迅速,并得到广泛应用。

雷达的原理并不复杂。它利用电磁波对目标进行探测,接收处理其回波,从而获得目标的各种信息,以达到一定的探测目的。

雷达发展到今天,虽然性能不断提升、型号多种多样、应用越来越广,但它始终围绕着两大主题发展:一是不断提升雷达在复杂环境中的生存和工作能力;二是不断拓展对目标信息的获取能力,进而提升对目标的分辨、识别和认知能力。后者在技术上可谓奥妙无穷、永无止境,不仅要看得见、看得清,且要求目标信息要素齐全、直观形象、一目了然。在这方面,全极化雷达成像技术成为最有潜力的研究方向之一。

所谓“全极化”,是指雷达电磁波的一种偏振方式,以及由此产生的多种极化状态。它对提高雷达目标识别能力,具有极其重要的影响。经过科研人员的不懈努力,全极化雷达成像技术这一世界性难题已有了一定突破。

信息感知,从“黑白图像”到“彩色图像”

类似于医院给病人做“B超”,传统单极化雷达成像只能获得目标的“黑白图像”,全极化雷达成像就好比是“彩超”,获取的图像信息更丰富、更直观,不仅有颜色信息,更有细腻的物理信息,信息容量成倍增加。

全极化雷达成像为何能做到这一点呢?奥妙就在于,它具备精确获取目标电磁散射信息并进行精细化解译与识别处理的功能。因为,当目标受到电磁波照射时,会出现“变极化效应”,即散射波的极化状态相对于入射波会发生改变,两者之间存在的特定映射变换关系,又与目标的姿态、尺寸、结构、材料等物理属性密切相关。在雷达目标识别中,如果能有效感知和揭示目标“变极化效应”,就能提取目标所蕴含的丰富物理信息,进而提升雷达的抗干扰、目标检测、分类和识别等性能。

全极化作为一种独特的维度信息,能描述电磁波电场矢端在传播截面上随时间变化的轨迹特性,是获取目标“变极化效应”的物理基础。全极化雷达成像在信息感知方面的优势在于,它既能通过调控收发电磁波极化状态获取目标与环境的全极化散射信息,又能通过雷达成像技术获取目标与环境的高分辨率雷达图像。

然而,要获取高质量的目标全极化“彩色图像”并作精细化处理,还涉及极化测量波形、运动补偿、极化校准、辐射定标、散射建模、精细解译与智能识别等雷达领域的前沿科技,这方面还有很长的路要走。

目标识别,从“看得见”到“看得清”“辨得明”

目标识别通常被誉为雷达领域“皇冠上的明珠”,是诸多科研人员孜孜以求的科学目标。雷达技术经过数十年的发展,取得了长足进步。由于目标、自然环境及电磁环境的深刻变化,高价值目标识别仍是雷达探测领域的一大技术难题。全极化雷达成像技术成为目标识别的关键。

人们常把雷达比作“千里眼”,但眼睛看到的信息往往具有多义性,可谓“横看成岭侧成峰,远近高低各不同”。同一目标,在不同视角下获得的雷达图像可能是显著不同的。在一些特殊情况下,不同目标的雷达图像又可能呈现出相似性。这就是雷达目标的散射多样性,也是雷达目标识别面临的一大技术瓶颈。

为此,科研人员通过深入研究雷达目标电磁散射特性,进行了一系列基础研究与关键技术攻关。例如,通过挖掘和利用雷达目标散射多样性,揭示全极化雷达成像下多姿态目标的散射机理,实现多姿态目标的极化识别。通过多学科交叉研究,促进全极化雷达成像、电磁散射认知、人工智能等技术的融合发展,推动全极化雷达成像与目标识别技术从“看得见”逐步向“看得清”“辨得明”跨越。

当然,要实现准确、自动和智能的目标识别,特别是对抗环境下的高价值人造目标识别,仍是“路漫漫其修远兮”,仍需要科学家“吾将上下而求索”的持续创新。

创新应用,可在陆海空天实现全天时全天候探测

20世纪80年代以来,科研人员通过将雷达极化与成像雷达进行有机融合,使极化雷达成像技术取得快速发展,通过将其部署在陆地、海洋、空天,以及舰船、卫星、导弹、无人机等多种平台,使全天时全天候探测逐步变成现实,在对地观测、减灾防灾、空间监视、战场侦察与精确打击等诸多方面展现出广阔的应用前景——

对地观测。将极化成像雷达部署在空间飞行器上,给人类了解我们所在星球提供了前所未有的新视角。2000年,美国利用航天飞机搭载的成像雷达系统,实现了全球地形测绘,首次获得全球高程信息。2010年以来,德国利用两颗卫星搭载的极化成像雷达系统,将全球地形测绘精度提升了一个数量级。此外,欧空局计划发射搭载全极化成像雷达的卫星,以期实现全球森林生物量的精确测定,助力全球二氧化碳减排计划。

减灾防灾。近年来,具有较大破坏力的地震、洪涝、海啸等自然灾害频发。全极化成像雷达可全天候全天时对地观测,不受地面状况限制,具有快速、灵活、广域等优势,是快速全面掌握灾区受灾情况最为有效的技术途径之一。2013年以来,科研人员利用全极化雷达成像与识别技术,实现了广域建筑物倒损率准确估计的研究成果。此外,全极化成像雷达还有望在蝗虫迁飞等生物灾害识别预警、高价值基础设施形变监测预警等领域发挥重要作用。

空间监视。“制天权”是世界军事强国竞争的战略制高点,空间攻防对抗日益成为现代战争胜败的关键。早在20世纪50年代,美国就开始研制大型地基极化雷达,并于1958年成功识别出当时苏联发射的第二颗人造卫星“具有角反射器结构”。此外,在美国导弹防御系统中处于核心地位的地基和海基反导雷达等,均具有全极化雷达成像与识别模式,提升了导弹弹头类目标的识别能力。

精确制导。精确制导武器是现代信息化战争的主角,全极化雷达成像技术在精确制导方面同样大有用武之地。如果在精确制导武器的雷达导引头上融合极化雷达成像与识别技术,就能极大提高对目标进行自动检测、识别和攻击点选择的能力。据报道,英国研发的“硫磺石”导弹,就装备了极化成像雷达导引头,采用圆极化收发体制,能识别具有攻击价值的坦克等重要目标。德国研制极化成像雷达导引头,采用变极化发射、双极化接收体制,具备在恶劣天气、强杂波和电子干扰等复杂条件下对目标进行自动识别和攻击能力。

长理土木学院赴国防科技大学开展专业认知教育

近日,长沙理工大学土木工程学院力学系教师和新生辅导员组织带领学院100余名2023级工程力学专业学生赴国防科技大学开展力学专业认知教育活动。

在国防科大,师生们聆听了空天科学学院李道奎教授和王海涛副教授作的学术报告。李道奎以“航空航天中的力学与国防科大空天力学专业”为题,重点介绍了空天领域涉及到的力学问题,拓展了同学们对力学应用领域的认识,并对同学们有关力学专业深造等方面的问题进行详细解答。王海涛以“自主航天任务设计软件ATK”为题,介绍了运动学、动力学等专业力学知识在ATK软件开发中的基础性作用和其所在团队立志国产、掌握核心技术的航天报国之心。

随后,师生们依次参观了国防科技大学校史馆、基础力学实验室、高超声速空气动力学实验室,深入了解了力学的前沿领域和力学在重点行业中发挥的基础性作用。

“本次活动让我更加深刻地明白了力学专业作为基础学科的广阔发展前景,增强了我的专业自信心。”工力2301班李想同学说。

据了解,近年来,长沙理工大学土木工程学院高度重视新生专业认知教育,借助院长第一课、土木工程概论、专业教育与学习方法指导等课程,运用通识教育讲座、实验室实地参观、院长午餐会等形式开展系列专业认知教育,充分发挥专业教师的育人主体作用,同时利用科创中心、专业实验室等科创育人资源,不断教育引导学生将专业认同感转化为工程报国的使命感。(彭旭龙 邓文杰 罗琼)

黑米吧

欢迎來到黑米吧指南,我们致力于提供全方位的日常生活健康知识,涵盖了各方面的科学知识,是值得信赖的社区。

猜你喜欢